NAME:	SECTION:
Q1. Which of the following materials are copolymeric substrates and noble metals?	ommonly used as adhesion layers betweer
- [] Cr	
- [] Ti	
- [] Al	
-[]Si	
Q2. Which of the following sentences desc	ribes the process of sputtering?
 - [] It is a vacuum-based process in which ato into the gas phase by heating with an electron substrate. 	
- [] It is a vacuum-based process in which ato into the gas phase by Joule heating and are fi	
 [] It is a vacuum-based process in which ato bombardment with energetic ions accelerated onto the substrate. 	,
Q3. What are ALL the possible mechanism	s at the electrode-electrolyte interface?
Answer:	
Q4: Considering electrical neuromodulation probability of resulting in a residual charge	
- [] A balanced waveform	
- [] An imbalanced waveform	
- [] A symmetrical waveform	
- [] An unsymmetrical waveform	
Q5: True or false?	
An action potential will always be triggered wh depolarized.	en the membrane potential of a neuron is
Answer:	

Q6. The figure below represents a multilayer that has to be bent with a bending radius of 10 mm.

Materials	Young's modulus	Critical strain	Ultimate strength
Polyimide	2.5 GPa	2.9%	72 MPa
Parylene C	2.8 GPa	2.5%	69 MPa
Titanium (Ti)	110 GPa	0.2%	220 MPa
Platinum (Pt)	105 GPa	0.6%	630 MPa
Alumina (Al ₂ O ₃)	330 GPa	0.08%	260 MPa
Titania (TiO₂)	230 GPa	0.14%	330 MPa

1) Assuming $\underline{E_i} = \frac{E_i}{(1-\gamma^2)} \approx E_i$, calculate the neutral plane.

$$z_n = \mu m$$

2) Calculate the maximum strain. Where is the maximum strain?

$$\varepsilon_{max} = \%$$

3) Calculate the maximum stress. Where is the maximum stress?

$$\sigma_{max} = MPa$$

4) Is it ok if the multilayer is applied to a tube with radius of 1 mm? Why?

Solutions to the mock quiz

- С Cr, Ti
- Capacitive, Faradaic (Redox) and Pseudocapacitive

max=73.63 MPa; It is at the top of Alumina

 $\ensuremath{\text{Mo}}\xspace$, because the strain and stress in Alumina and Titania are beyond the limits.

- 2. 3. 4. 5. В
- Eslse
- p.

c. d.

- my 88.51 = nz my 13.89 ym eithe bottom of polyimide max=0.14 %; It is at the bottom of polyimide